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Problem: Give an example of a subalgebra of Mn(F ) which is
commutative.

Take any pair (k1, k2) of positive integers satisfying
k1 + k2 = n and consider

J =

k1

k2

R = FIn + J
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R = FIn + J

dimF (R) = 1 + k1k2

(Schur 1905, Jacobson 1944) The dimension over a field F of

any commutative subalgebra of Mn(F ) is at most
⌊
n2

4

⌋
+ 1,

where b c is the floor function.
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Let k1, k2, . . . , km+1 be a sequence of positive integers such
that k1 + k2 + · · ·+ km+1 = n.

Let

··
··
··

··
··
··
··
·

J =

k1

k2

km

km+1

Let R = FIn + J (“TYPICAL EXAMPLE”)

Obviously: J(R) = J, Jm+1 = 0, and R is local.
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dimFR = k1(n − k1) + k2(n − k1 − k2) + · · ·

+km(n − k1 − k2 − · · · − km) + 1

=
∑m+1

i ,j=1, i<j kikj + 1.

M(`, n)
def
= max

 ∑̀
i ,j=1, i<j

kikj + 1 : k1, k2, . . . , k` are

nonnegative integers such that
∑̀
i=1

ki = n

}
.
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If ` and n are positive integers with ` > n, then
M(`, n) = 1

2

(
n2 − n

)
+ 1.

Let ` 6 n and

n =
⌊n
`

⌋
` + r .

We get M(`, n) for the sequence (k1, k2, . . . , k`) ∈ N`
0 defined

in the following way:

ki
def
=


⌊
n
`

⌋
, for 1 6 i 6 `− r⌊

n
`

⌋
+ 1, for `− r < i 6 `.
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Let L be a Lie algebra and let x1, x2, . . . , xm be a finite
sequence of elements in L.

Define element [x1, x2, . . . , xm]∗ of L recursively as follows

[x1]∗
def
= x1, and

[x1, x2, . . . , xm]∗
def
= [[x1, x2, . . . , xm−1]∗, xm], for m > 1.

The Lower Central Series {L[m]}m∈N of L is defined by

L[m]
def
= {[x1, x2, . . . , xm]∗ : xi ∈ L for 1 6 i 6 m}.

Definition: We say L is nilpotent if L[m] = 0 for some m ∈ N,
m > 1, and more specifically, nilpotent of index m, if
L[m+1] = 0.
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Every ring R may be endowed with the structure of a Lie
algebra (over the centre of R), by choosing as bracket the
commutator defined by

∀r , s ∈ R, [r , s]
def
= rs − sr .

We call a ring R Lie nilpotent [resp. Lie nilpotent of index m]
if R, considered as a Lie algebra via the commutator, is
nilpotent [resp. nilpotent of index m].

Observe that the commutative rings are precisely the rings
that are Lie nilpotent of index 1.

“TYPICAL EXAMPLE” is an algebra which is Lie nilpotent of
index m.
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Conjecture. (J. Szigeti, L. van Wyk) Let F be any
field, m and n positive integers, and R an
F -subalgebra of Mn(F ) with Lie nilpotence index m.
Then

dimFR 6 M(m + 1, n).
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Theorem 1. Let C be a nonempty class of fields and C the class of
all subfields of fields in C. The following statements are equivalent:

(a)The Conjecture holds in respect of all fields in C;

(b)The Conjecture holds in respect of all fields in C.
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Theorem 2. The following statements are equivalent for an
algebraically closed field F :

The Conjecture holds in respect of F ;

For all positive integers m and n, if R is any F -subalgebra of
U∗n(F ) (upper triangular n × n matrices over F with constant
main diagonal) with Lie nilpotence index m, then

dimFR 6 M(m + 1, n).
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Let R be an F -subalgebra of U∗n(F ).

Let V be a faithful right R-module (for example V = F n).
We define the following sequences {Rk}k∈N, {Jk}k∈N and
{Uk}k∈N:


R1

def
= R,

J1
def
= J(R1), and

U1
def
= any F -subspace complement of VJ1 in V .

For k ∈ N, k > 2, define



Rk
def
= FIn + (0 :Rk−1 Uk−1),

Jk
def
= J(Rk), and

Uk
def
= any F -subspace complement of VJ1J2 . . . Jk in

VJ1J2 . . . Jk−1.
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Obviously, R1 ⊇ R2 ⊇ · · · , and J1 ⊇ J2 ⊇ · · ·

Define

`
def
= min{k ∈ N : J1 . . . Jk = 0}.

Theorem 3. Let the sequences {Rk}k∈N, {Jk}k∈N and
{Uk}k∈N be defined as above, and let ` be as above. Then:

(i) dimFR 6 M(`,dimFV ).
(ii) If R is Lie nilpotent of index m, then ` 6 m + 1
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Theorem 4. (J. van den Berg, J. Szigeti, L. van Wyk and M.Z.)
Let F be any field, m and n positive integers, and R an
F -subalgebra of Mn(F ) with Lie nilpotence index m. Then

dimFR 6 M(m + 1, n).
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PROBLEM: Every ring R that is Lie nilpotent of index m, is also
Lie solvable of index m. Thus, it is natural to ask about the
maximal dimension of Lie solvable of index m subalgebras of
Mn(F ).
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Thank you for your attention!
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